Dirac operators and geodesic metric on the harmonic Sierpinski gasket and other fractal sets

نویسندگان

  • Michel L. Lapidus
  • Jonathan J. Sarhad
چکیده

We construct Dirac operators and spectral triples for certain, not necessarily selfsimilar, fractal sets built on curves. Connes’ distance formula of noncommutative geometry provides a natural metric on the fractal. To motivate the construction, we address Kigami’s measurable Riemannian geometry, which is a metric realization of the Sierpinski gasket as a self-affine space with continuously differentiable geodesics. As a fractal analog of Connes’ theorem for a compact Riemmanian manifold, it is proved that the natural metric coincides with Kigami’s geodesic metric. This present work extends to the harmonic gasket and other fractals built on curves a significant part of the earlier results of E. Christensen, C. Ivan, and the first author obtained, in particular, for the Euclidean Sierpinski gasket. (As is now well known, the harmonic gasket, unlike the Euclidean gasket, is ideally suited to analysis on fractals. It can be viewed as the Euclidean gasket in harmonic coordinates.) Our current, broader framework allows for a variety of potential applications to geometric analysis on fractal manifolds. Mathematics Subject Classification (2010). 28A80, 34L40, 46L87, 53C22, 53C23, 58B20, 58B34; 53B21, 53C27, 58C35, 58C40, 81R60.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dirac operators and spectral triples for some fractal sets built on curves

We construct spectral triples and, in particular, Dirac operators, for the algebra of continuous functions on certain compact metric spaces. The triples are countable sums of triples where each summand is based on a curve in the space. Several fractals, like a finitely summable infinite tree and the Sierpinski gasket, fit naturally within our framework. In these cases, we show that our spectral...

متن کامل

Spectral triples and the geometry of fractals

We construct spectral triples for the Sierpinski gasket as infinite sums of unbounded Fredholm modules associated with the holes in the gasket and investigate their properties. For each element in the K-homology group we find a representative induced by one of our spectral triples. Not all of these triples, however, will have the right geometric properties. If we want the metric induced by the ...

متن کامل

Some Spectral Properties of Pseudo-differential Operators on the Sierpiński Gasket

We prove versions of the strong Szëgo limit theorem for certain classes of pseudodifferential operators defined on the Sierpiński gasket. Our results used in a fundamental way the existence of localized eigenfunctions for the Laplacian on this fractal.

متن کامل

The Finite Element Method on the Sierpinski Gasket

For certain classes of fractal differential equations on the Sierpinski gasket, built using the Kigami Laplacian, we describe how to approximate solutions using the finite element method based on piecewise harmonic or piecewise biharmonic splines. We give theoretical error estimates, and compare these with experimental data obtained using a computer implementation of the method (available at th...

متن کامل

Topological spaces admitting a unique fractal structure

Each homeomorphism from the n-dimensional Sierpiński gasket into itself is a similarity map with respect to the usual metrization. Moreover, the topology of this space determines a kind of Haar measure and a canonical metric. We study spaces with similar properties. It turns out that in many cases, “fractal structure” is not a metric but a topological phenomenon.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015